
29
April
Train and deploy TensorFlow models in Go
Start time: 18:00 CET
Duration: 50min
Format: webinar
Where: online
Language: English
Price: free
Speaker

Paolo Galeone
ML & CV Researcher
Abstract
The final step of the machine learning workflow is the deployment to production. In this phase, we want the trained model to be deployed on a device, but more than often the device has an entirely different runtime environment with respect to the one used during training. TensorFlow, thanks to its SavedModel serialization format, allows deploying a trained model to several “deployment platforms”. Your model can run on a browser, in a Java application, in a Python script, and last but not least on every device that can run a C program.
There is, in fact, a TensorFlow C API that can also be used for generating language bindings – and that is where Go, with its FFI for the C language, jumps in.
In this talk, we will learn the basics of the TensorFlow Go bindings, their limitations, and how the tfgo library simplifies their usage. Moreover, the flexibility of the SavedModel serialization format is presented, and we will be able to design a deployment environment for incremental learning – in Go!
Outline
- Machine learning workflow
- Tensorflow program
- Exporting training
- Go binding
- Simulating learning
Who it is for
Go developers approaching Machine Learning.
Prerequisites
Very basic knowledge of machine learning, some Python and some Go.
Required materials
None.
Certificate of attendance
A certificate of participation will be issued at the end of the session
Register for free